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COVID-19 epidemic

I Started in December 2019 in Wuhan, China

I First community spread outside China and Korea reported in
late February 2020 in Italy

I European countries quickly implemented mitigation policies
such as lockdown

I U.S., Canada, and other countries followed suit by mid-March
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Are mitigation policies warranted?

I At first glance, protecting public from infectious disease
appears to be a responsible government action

I After second thought, draconian social distancing policies
appears no longer self-evident

1. Closure of schools and businesses have obvious economic costs
2. Social distancing prevents new infections but also building herd

immunity—hence policies may never achieve goal of ending
epidemic VoxEU column

3. Mathematical epidemic models used in policy-making ignore
forward-looking behavior by rational agents

I Calls for rigorous theoretical (and quantitative) analysis
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This paper

I Theoretically studies Susceptible-Infected-Recovered (SIR)
epidemic model with forward-looking, rational agents

I Features:
I Agents choose economic activity level optimally, understanding

infection risk
I Cases may be underreported and agents need to infer their

health status (empirically, only 10–20% of cases reported)
I Government may have limited commitment power to

implement optimal policy
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Main results (theoretical)

1. Prove existence of perfect Bayesian Markov competitive
equilibrium

I Here
I “Perfect Bayesian”: agents use Bayes rule on equilibrium path
I “Markov”: policy functions depend on state variables
I “Competitive”: agents ignore effects of their behavior on

aggregate variables

I Markov structure important because we can talk about optimal
policy at any point in time or point in state space

2. Prove approximate static efficiency of equilibrium
I Equilibrium inefficient due to externalities

I Static: infected agents infect others
I Dynamic: collective behavior of agents affect future dynamics

I Static externality by unknown infected agents small
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Main results (quantitative)

I Numerically solve for equilibrium and optimal policy of model
of COVID-19 epidemic

I Findings:
I Endogenous social distancing by agents mitigates epidemic,

but welfare gain modest (∼ 10% reduction in welfare costs)
I Quarantine effective, even with significant underreporting
I Welfare gain from lockdown quite modest, and requires

I Small enough number of initial cases
I Underreporting
I Rapid vaccine development
I Government commitment until vaccine arrival
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Literature

I Mathematical epidemic model: Kermack & McKendrick
(1927)

I Non-strategic economic epidemic model: Sethi (1978),
Kruse & Strack (2020)

I Strategic epidemic model:
I (HIV) Geoffard & Philipson (1996), Kremer (1996), Auld

(2003)
I (Community infectious disease) Reluga (2010), Chen (2012),

Fenichel (2013), Toxvaerd (2020)

I Failure of well-intended public health policy Toxvaerd
(2019)
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Society, agent types

I Agents: n = 1, . . . ,N (finite but large)

I Time: t = 0,∆, 2∆, . . . (discrete, infinite horizon)
I Agent types by health/information

I S : susceptible (no immunity)
I Ik : known infected (reported)
I Iu: unknown infected (unreported)
I Rk : known recovered (reported)
I Ru: unknown recovered (unreported)
I D: dead

I Behavioral types are denoted by h ∈ {U, Ik ,Rk ,D}, where
U = S ∪ Iu ∪ Ru is unknown type
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State variables

I Individual state variables are health/information status
h ∈ {U, Ik ,Rk ,D}

I Aggregate state variables are fraction of each agent type
I Let Nh be number of type h ∈ {S , Ik , Iu,Rk ,Ru,D} agents
I With slight abuse of notation, let h = Nh/N be fraction of

type h agents
I Then state space is set Z of z = (S , Ik , Iu,Rk ,Ru,D), where

S + Ik + Iu + Rk + Ru + D = 1,

N(S , Ik , Iu,Rk ,Ru,D) ∈ Z6
+

I Assume aggregate state observable (can be inferred from
random testing)
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Preferences

I Alive agents (excluding Ik) take action a ∈ A = [a
¯
, 1] ⊂ [0, 1]

with flow payoff u(a), where u(1) = 0, u′ > 0, u′′ < 0
I Interpretation: a is “economic activity level”, with a = 1 being

normal life and a = a
¯

being locked down

I Known infected (Ik) agents have utility function uI : A→ R,
single-peaked at aI ∈ A

I Dead agents receive flow utility uD < 0, where
uD ≤ uI (a) ≤ u(a) for all a ∈ A

I Agents maximize expected discounted payoffs at rate e−r∆,
where r > 0: discount rate
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Disease transmission
I Agents meet randomly and transmit infectious disease
I If n, n′ take actions an, a

′
n, then they meet with probability

λ∆anan′/N, where λ: meeting rate
I λ exogenous and depends on how society is organized, e.g.,

population density, commuting, shopping, teaching pattern
I Conditional on n meeting n′ and n′ being infected, n gets

infected with probability τ
I τ exogenous and depends on contagiousness and society

organization (greet by bowing, shaking hands, hugging, kissing)

I New infection reported with probability σ ∈ (0, 1]
I If type h agents take average action ah, then infection

probability

Pr(get infected | a, susceptible) = β∆(aIk Ik + aU Iu)a,

where β = τλ: transmission rate
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Recovery, death, and vaccine arrival

I Every period, infected agents removed (recover or die) with
probability γ∆

I Iu agents always recover; conditional on removal, Ik agents die
with probability δ

I δ: Case Fatality Rate (CFR) (fatality rate among reported
cases)

I δ0 := σδ: Infection Fatality Rate (IFR) (fatality rate among all
cases)

I Recovered and dead agents remain so forever (lifelong
immunity)

I Vaccine arrives at Poisson rate ν; once vaccine arrives, all
alive non-infected agents become Rk
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Mathematical epidemic models

I Our framework is basic SIR(D) model
I Other variations:

I SI: infected agents remain infected forever
(e.g., Epstein-Barr virus infection)

I SIS: infected agents recover but can be reinfected
(e.g., seasonal influenza)

I SEIR: exposed agents are infected but not yet contagious

I For COVID-19, unclear whether immunity is lifelong
I Probably SIRDS (possibility of R → S as in influenza) more

appropriate, but in short run SIRD should be enough
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Assumptions

Assumption (Perfect competition)

Agents view the evolution of the aggregate state z as exogenous
and ignore the impact of their behavior on the aggregate state.

Assumption (Consistency)

On equilibrium paths, agents update their beliefs using the Bayes
rule. Off equilibrium paths, unknown (U) agents believe they are
susceptible with probability

µ(z) :=

{
S

S+Iu+Ru
if S > 0,

0 otherwise.
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Individual problems: known recovered and dead

I Let Vh(z) be value function of type h agents

I Because dead agents remain dead, Bellman equation is

VD = (1− e−r∆)uD + e−r∆VD ⇐⇒ VD = uD .

I Because known recovered agents remain recovered, Bellman
equation is

VRk
= max

a∈A

{
(1− e−r∆)u(a) + e−r∆VRk

}
.

I Optimal policy is clearly aRk
= 1 and value function is VRk

= 0
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Individual problems: known infected

I Known infected agents are removed with probability γ∆, and
conditional on removal, die with probability δ = δ0/σ

I Hence Bellman equation is

VIk = max
a∈A

{
(1− e−r∆)uI (a)

+ e−r∆((1− γ∆)VIk︸ ︷︷ ︸
stay infected

+ γ∆[(1− δ)VRk
+ δVD ])︸ ︷︷ ︸

removal

}
.

I Hence optimal policy is aIk = aI and value function is

VIk =
(1− e−r∆)uI + e−r∆γ∆δuD

1− e−r∆(1− γ∆)
,

where uI := uI (aI )
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Individual problems: unknown

I Suppose unknown agents adhere to policy function aU(z) and
have belief µ(z) above

I Let p(z) = β∆(aI Ik + aU(z)Iu) be probability of infection
with full action (a = 1)

I Then Bellman equation is

VU(z) = max
a∈A

{
(1− e−r∆)u(a) + e−r∆σµpaVIk︸ ︷︷ ︸

known infection

+ e−r∆(1− σµpa)︸ ︷︷ ︸
stay unknown

Ez(e−ν∆VU(z ′)︸ ︷︷ ︸
no vaccine

+ (1− e−ν∆)VRk︸ ︷︷ ︸
vaccine

)

}
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Value functions

Proposition (Value functions)

Fix a policy function aU : Z → A of unknown agents. Then there
exists a unique value function VU : Z → R satisfying the Bellman
equation. Furthermore,

VD = uD <
(er∆ − 1)uI + γ∆δuD

er∆ − 1 + γ∆
= VIk

<
eν∆σβ∆

e(r+ν)∆ − 1 + σβ∆
VIk ≤ VU(z) ≤ VRk

= 0.

I VD ≤ VIk and VU ≤ VRk
obvious

I VIk ≤ VU because U agents can always take a = 1 and uI ≤ u
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Equilibrium

I Our equilibrium concept is perfect Bayesian Markov
competitive equilibrium

I “Perfect Bayesian”: agents use Bayes rule on equilibrium path
I “Markov”: policy functions depend on state variables
I “Competitive”: agents ignore effects of their behavior on

aggregate variables

I Justification of competitive behavior: N large
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Perfect Bayesian Markov competitive equilibrium

Definition (Markov equilibrium)

A (pure strategy) perfect Bayesian Markov competitive equilibrium
consists of unknown agents’ belief µ(z) of being susceptible,
transition probabilities {q(z , z ′)}z,z ′∈Z for aggregate state, value
functions {Vh(z)}h=U,Ik ,Rk ,D

, and policy functions {ah(z)}h=U,Ik ,Rk

such that

1. (Consistency) The belief µ(z) satisfies the Bayes rule on
equilibrium paths; the transition probabilities {q(z , z ′)} are
consistent with individual actions and the mechanisms of
disease transmission, symptom development, recovery, and
death,

2. (Sequential rationality) Bellman equations hold
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Existence of equilibrium

Theorem (Existence of equilibrium)

Under maintained assumptions, there exists a pure strategy perfect
Bayesian Markov competitive equilibrium, where the belief µ(z)
always satisfies

µ(z) :=

{
S

S+Iu+Ru
if S > 0,

0 otherwise.
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Epidemic dynamics

I Fix any policy functions (aU(z), aIk (z)) and induced transition
probabilities {q(z , z ′)},

I Then

Ez(St+∆ − St)/∆ = −βaU(z)(σaIk (z) + (1− σ)aU(z))St It ,

Ez(It+∆ − It)/∆ = (βaU(z)(σaIk (z) + (1− σ)aU(z))− γ)It ,

Ez(Rt+∆ − Rt)/∆ = γ(1− δ)It ,

Ez(Dt+∆ − Dt)/∆ = γδIt .

I Standard SIR(D) model special case by letting aU = aIk = 1,
N →∞, ∆→ 0

I Definition: herd immunity achieved if R0St ≤ 1 (where
R0 = β/γ: reproduction number), implying İt ≤ 0

TP, AAT Cleveland Fed & UCSD

Optimal Epidemic Control



Introduction SIR model with rational agents Equilibrium analysis Numerical analysis Conclusion

Model specification

I One period is a day

I Annual 5% discounting, so r = 0.05/365.25

I Vaccine arrives in one year, so ν = 1/365.25

I Daily transmission rate β = 1/5.4, from meta-analysis of Rai
et.al. (2021)

I Daily recovery rate γ = 1/13.5, from You et.al. (2020), so
basic reproduction number R0 = β/γ = 2.5

I Infection fatality rate δ0 = 0.0027, from meta-analysis of
Ioannidis (2021)

I Case fatality rate δ = 0.0135, median value across 200+
countries/regions; hence reporting rate σ = δ0/δ = 0.2
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Model specification

I Log utility, so u(a) = log a

I Assume uI (a) = u(a), so optimal action of Ik agents aI = 1
(worst case analysis)

I Calibrate uD = −10.77 from Sweden data, which did not
introduce lockdown
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Case fatality rate in Sweden
I δCFR = 0.0178, so reporting rate σ = 0.15 in Sweden
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Prevalence in Sweden
I To back up prevalence, use accounting equation

Dt+1 − Dt = γδIFRIt ⇐⇒ It = (Dt+1 − Dt)/γδIFR
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Myopic equilibrium
I Agents choose myopic optimal action a = 1 (standard SIR

model)
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Markov equilibrium
I Agents choose individually optimal actions aU(z), aIk (z)
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Equilibrium action of unknown agents
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Efficient action of unknown agents
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Recommended action over time
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Welfare cost and death toll

I σ: reporting rate

I Welfare gains from lockdown quite modest

Welfare cost (%) Death toll (per 100,000)
σ My. ME SE Eff. My. ME SE Eff.

0.1 1.77 1.61 1.58 1.34 242 212 200 0.0016
0.2 1.77 1.61 1.59 1.45 242 211 200 0.0016
0.4 1.77 1.62 1.61 1.56 242 209 200 183
0.7 1.77 1.62 1.61 1.57 242 207 202 183
1 1.77 1.60 1.60 1.55 242 203 203 182
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Importance of quarantine

I So far we assume infected agents choose aI = 1

I Suppose maximally quarantined, so aI = a
¯

Welfare cost (%) Death toll (per 100,000)
σ My. ME SE Eff. My. ME SE Eff.

0.1 1.77 1.42 1.36 1.11 242 203 189 0.0015
0.2 1.77 1.20 1.13 0.955 242 192 176 0.0015
0.4 1.77 0.616 0.554 0.584 242 158 139 73
0.7 1.77 0 0 0 242 0.0012 0.0012 0.0012
1 1.77 0 0 0 242 0 0 0
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Efficient action without vaccine
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Recommended action without vaccine
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Welfare cost and death toll

Welfare cost (%) Death toll (per 100,000)
σ Tvaccine My. ME SE Eff. My. ME SE Eff.

0.2

1 1.77 1.61 1.59 1.45 242 211 200 0.0016
1.5 1.99 1.86 1.89 1.70 242 211 200 185
2 2.11 2.01 2.07 1.91 242 211 200 186
5 2.34 2.30 2.43 2.15 242 211 200 189
∞ 2.51 2.51 2.72 2.32 242 211 200 190

1

1 1.77 1.60 1.60 1.55 242 203 203 182
1.5 1.99 1.81 1.81 1.76 242 204 204 184
2 2.11 1.93 1.93 1.87 242 204 204 185
5 2.34 2.17 2.17 2.10 242 204 204 186
∞ 2.51 2.33 2.33 2.26 242 205 205 188
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Importance of commitment power

I So far, we assume government have perfect commitment

I Assume now government fail to commit to optimal policy, and
society reverts to equilibrium

Welfare cost (%) Death toll (per 100,000)
Tcommit My. ME Eff. My. ME Eff.

1/4 1.77 1.61 1.60 242 211 182
1/2 1.77 1.61 1.60 242 211 182

1 1.77 1.61 1.56 242 211 0.0016
2 1.77 1.61 1.52 242 211 0.0016
∞ 1.77 1.61 1.45 242 211 0.0016
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Conclusion

I Theoretically studied equilibrium model of epidemics with
underreporting

I Findings:
I Endogenous social distancing by agents mitigates epidemic,

but welfare gain modest (∼ 10% reduction in welfare costs)
I Quarantine effective, even with significant underreporting
I Welfare gain from lockdown quite modest, and requires

I Small enough number of initial cases
I Underreporting
I Rapid vaccine development
I Government commitment until vaccine arrival

TP, AAT Cleveland Fed & UCSD

Optimal Epidemic Control


	Introduction
	SIR model with rational agents
	Equilibrium analysis
	Numerical analysis
	Conclusion

