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 In long-term investments such as public pension funds, it is necessary to pay attention to the 

probability of the amount of assets falling below the required level at a future point in time 

(downside probability). In actual investment, a policy asset mix should be established and then 

rebalanced in a timely and appropriate manner. If a one-period optimization model based on a 

mean-variance model is used to formulate the policy asset mix, it is required to confirm the 

downside probability when the policy asset mix derived from the model is managed faithfully. 

 This study shows that the condition that "the frequencies of data sampling and rebalancing 

assumed in the operation are both sufficiently high" should be satisfied in order to explicitly grasp 

the correspondence between the parameters of the one-period optimization model such as mean 

and variance and the downside probability from the normal distribution, and examine the use of the 

one-period optimization model in long-term investment from the perspective of the rebalancing 

and sampling frequencies. 

（Note: This working paper is a compilation of research results by GPIF staff, and the contents and opinions expressed in the text do not 

represent the official views of the GPIF. We would also like to thank Mr. Hikaru Takeuchi, a GPIF staff member, for his helpful comments in 

preparing this working paper. We hereby note and thank him for his comments. 

1． Introduction 

When constructing portfolios, one-period optimization models are mainly employed due to the ease of model 

construction and solution. In GPIF, assets are managed within the allowed range to avoid significant deviation 

from the policy asset mix (see GPIF (2023) for detail). Therefore, investment decisions, such as major asset 

allocation changes, are made at the time the policy asset mix is determined. Based on the assumption of such 

investment process, the policy asset mix is constructed using a one-period optimization model. However, 

since it is assumed that public pension funds are expected to use the invested assets for pension payments 

in the future, it is necessary to measure the probability that the assumed amount of assets will fall below the 

required level at a future point in time (downside probability) when the actual portfolio is faithfully managed 

according to the policy asset mix determined using the one-period optimization model.  

The most prominent one-period model is the mean-variance model proposed by Markowitz (1952). Honda 

(2019) explains that the mean-variance model still provides a very effective methodology for analyzing 

financial markets and constructing portfolio strategies. Honda (2019) discusses the issue closely related to 
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the sampling frequency, which is the subject of this study. One of the topics that Honda (2019) addresses 

is the issue of estimating parameters used in mean and variance models, and points out some caveats when 

using parameters, based on previous studies such as Levy and Roll (2010) and Kan and Zhou (2007). 

Specifically, "Even if the estimated parameters are unbiased estimators (i.e., even if the number of assets 

that are estimated to be larger than their true values and the number of assets that are estimated to be 

smaller are roughly equal), when obtained estimates are used as input values for the mean and variance model 

to optimize portfolios, the derived efficient frontier tends to expand." In light of this point, when attempting 

optimization based on estimated parameters, it is desirable that the confidence interval of the estimated 

parameter be as small as possible, in addition to being unbiased. Therefore, when estimating parameters from 

historical data, the sampling frequency should be sufficient to ensure a sufficient number of return data.  

 In order to ensure the actual portfolio does not deviate significantly from the policy asset mix in long-

term fund management, it is necessary to appropriately rebalance the portfolio as needed when the weight 

of the managed portfolio deviates from that of the policy asset mix. Shimizu and Uchiyama (2017) are among 

the preceding studies that analyzed the impact of systematic rebalancing on performance (rebalancing 

premium). After comparing the rebalancing premium from a Monte Carlo simulation using parameters estimated 

from the market assuming a geometric Brownian motion model and that obtained from rebalancing actual 

market data, they found that the contribution of rebalancing to performance improvement is limited when 

"investment opportunities do not change (estimated parameters are fixed)." In addition, if the rebalancing 

premium from the actual rebalancing is significantly larger, the study suggests that it is due to the impact of 

"fluctuations in investment opportunities," such as "risk reversal" (a phenomenon in which an asset with a 

low past performance subsequently performs well over time, while an asset with a high past performance 

subsequently performs poorly).  

The purpose of this study is to show that the condition that "the frequency of data sampling and the 

frequency of rebalancing are both sufficiently high" should be satisfied in order to justify the relation between 

the parameters of the one-period optimization model with mean and variance and the downside probability 

from the normal distribution, and to examine the points to be considered when using the one-period 

optimization model for long-term investment in terms of the rebalancing frequency and sampling frequency.  

 The structure of this paper is as follows. In Section 2, we adopt the geometric Brownian motion model as 

in Shimizu and Uchiyama (2017) and organize our ideas on rebalancing frequency (continuous rebalancing and 

buy and hold) in line with the purpose of this study. In Section 3, we discretize the geometric Brownian motion 

to more explicitly capture the effects of rebalancing frequency and sampling frequency (of return data used 

for parameter estimation) on downside probabilities. In Section 4, based on numerical examples, we review 

the differences in the size of the confidence intervals for the parameters due to the differences in sampling 

frequencies. In the final section, a summary and future issues are added. 

 

2．The case where each asset follows a geometric Brownian motion 

2.1 Geometric Brownian motion and rebalancing frequency 

 The price at the time 𝑡𝑡 for asset 𝑖𝑖 (𝑖𝑖 = 1,2,3,4), 𝑆𝑆𝑡𝑡𝑖𝑖, follows the geometric Brownian motion in equation 



 
 

(1). 

𝑑𝑑𝑆𝑆𝑡𝑡𝑖𝑖

𝑆𝑆𝑡𝑡𝑖𝑖
= 𝜇𝜇𝑖𝑖𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑖𝑖𝑑𝑑𝐵𝐵𝑡𝑡𝑖𝑖 (1) 

Where, 𝐵𝐵𝑡𝑡𝑖𝑖 is the standard Brownian motion, and 𝑑𝑑𝐵𝐵𝑡𝑡𝑖𝑖 ∙ 𝑑𝑑𝐵𝐵𝑡𝑡
𝑗𝑗𝑑𝑑𝑡𝑡 = 𝜌𝜌𝑖𝑖,𝑗𝑗𝑑𝑑𝑡𝑡. For details of Brownian motion, see 

Morimura and Kijima (1991).  

To handle each weight in the portfolio, the weight vector of the four assets (four assets are assumed 

because the current GPIF policy asset mix consists of four asset classes, but the same argument holds for 

the general case) 𝒘𝒘 = (𝑤𝑤1,𝑤𝑤2,𝑤𝑤3,𝑤𝑤4) and drift vector 𝝁𝝁 = (𝜇𝜇1,𝜇𝜇2, 𝜇𝜇3,𝜇𝜇4)  and diffusion matrices 𝛀𝛀 are 

introduced.  

 

(Case of continuous rebalancing) 

 Based on equation (1), the stochastic process followed by the portfolio return with weight 𝒘𝒘 is expressed 

as equation (2). 

𝑑𝑑𝑆𝑆𝑡𝑡𝑃𝑃

𝑆𝑆𝑡𝑡𝑃𝑃
= �𝑤𝑤𝑖𝑖

𝑑𝑑𝑆𝑆𝑡𝑡𝑖𝑖

𝑆𝑆𝑡𝑡𝑖𝑖

4

𝑖𝑖=1

= �𝑤𝑤𝑖𝑖�𝜇𝜇𝑖𝑖𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑖𝑖𝑑𝑑𝐵𝐵𝑡𝑡𝑖𝑖�
4

𝑖𝑖=1

= ��𝑤𝑤𝑖𝑖

4

𝑖𝑖=1

𝜇𝜇𝑖𝑖� 𝑑𝑑𝑡𝑡 + �𝑤𝑤𝑖𝑖𝜎𝜎𝑖𝑖𝑑𝑑𝐵𝐵𝑡𝑡𝑖𝑖
4

𝑖𝑖=1

= 𝒘𝒘𝝁𝝁𝑇𝑇𝑑𝑑𝑡𝑡 + �𝒘𝒘𝛀𝛀𝒘𝒘𝑇𝑇𝑑𝑑𝐵𝐵𝑡𝑡 

(2) 

Equation (2) implies that at every instant of time 𝑡𝑡 the distribution of the portfolio return at the next smallest 

time interval 𝑑𝑑𝑡𝑡 follows 𝑁𝑁(𝒘𝒘𝝁𝝁𝑇𝑇𝑑𝑑𝑡𝑡, 𝒘𝒘𝛀𝛀𝒘𝒘𝑇𝑇𝑑𝑑𝑡𝑡). This also means that the portfolio weights are always kept at 

𝒘𝒘, in other words, the portfolio is continuously rebalanced. 

 If equation (2) is always satisfied (i.e., continuous rebalancing), the total asset value 𝑆𝑆0𝑃𝑃 at time 0 is grown 

up to 𝑆𝑆𝑡𝑡𝑃𝑃 by integrating equation (2) from time point 0 to time point 𝑡𝑡. 

𝑆𝑆𝑡𝑡𝑃𝑃 = 𝑆𝑆0𝑃𝑃𝑒𝑒
�𝒘𝒘𝝁𝝁𝑇𝑇−𝟏𝟏𝟐𝟐𝒘𝒘𝛀𝛀𝒘𝒘

𝑇𝑇�𝑡𝑡+�𝒘𝒘𝛀𝛀𝒘𝒘𝑇𝑇𝐵𝐵𝑡𝑡 (3) 

Using equation (3), we obtain the portfolio gross return from time point 0 to time point 𝑡𝑡, 𝑅𝑅0→𝑡𝑡𝑃𝑃  as the 

stochastic process expressed by equation (4). 

𝑅𝑅0→𝑡𝑡𝑃𝑃 =
𝑆𝑆𝑡𝑡𝑃𝑃

𝑆𝑆0𝑃𝑃
= 𝑒𝑒�𝒘𝒘𝝁𝝁

𝑇𝑇−𝟏𝟏𝟐𝟐𝒘𝒘𝛀𝛀𝒘𝒘
𝑇𝑇�𝑡𝑡+�𝒘𝒘𝛀𝛀𝒘𝒘𝑇𝑇𝐵𝐵𝑡𝑡 (4) 

From equation (4), the expected value and the variance of the portfolio gross return 𝑅𝑅0→𝑡𝑡𝑃𝑃  are given by 

equations (5) and (6), respectively. 

𝐸𝐸(𝑅𝑅0→𝑡𝑡𝑃𝑃 ) = 𝐸𝐸 �𝑒𝑒�𝒘𝒘𝝁𝝁
𝑇𝑇−𝟏𝟏𝟐𝟐𝒘𝒘𝛀𝛀𝒘𝒘

𝑇𝑇�𝑡𝑡+�𝒘𝒘𝛀𝛀𝒘𝒘𝑇𝑇𝐵𝐵𝑡𝑡� = 𝑒𝑒�𝒘𝒘𝝁𝝁
𝑇𝑇−𝟏𝟏𝟐𝟐𝒘𝒘𝛀𝛀𝒘𝒘

𝑇𝑇�𝑡𝑡𝐸𝐸 �𝑒𝑒�𝒘𝒘𝛀𝛀𝒘𝒘𝑇𝑇𝐵𝐵𝑡𝑡�

= 𝑒𝑒�𝒘𝒘𝝁𝝁
𝑇𝑇−𝟏𝟏𝟐𝟐𝒘𝒘𝛀𝛀𝒘𝒘

𝑇𝑇�𝑡𝑡𝑒𝑒�
𝟏𝟏
𝟐𝟐𝒘𝒘𝛀𝛀𝒘𝒘

𝑇𝑇�𝑡𝑡 = 𝑒𝑒�𝒘𝒘𝝁𝝁𝑇𝑇�𝑡𝑡 

(5) 



 
 

𝑉𝑉(𝑅𝑅0→𝑡𝑡𝑃𝑃 ) = 𝑉𝑉 �𝑒𝑒�𝒘𝒘𝝁𝝁
𝑇𝑇−𝟏𝟏𝟐𝟐𝒘𝒘𝛀𝛀𝒘𝒘

𝑇𝑇�𝑡𝑡+�𝒘𝒘𝛀𝛀𝒘𝒘𝑇𝑇𝐵𝐵𝑡𝑡� = 𝑒𝑒2�𝒘𝒘𝝁𝝁
𝑇𝑇−𝟏𝟏𝟐𝟐𝒘𝒘𝛀𝛀𝒘𝒘

𝑇𝑇�𝑡𝑡𝑉𝑉 �𝑒𝑒�𝒘𝒘𝛀𝛀𝒘𝒘𝑇𝑇𝐵𝐵𝑡𝑡�

= 𝑒𝑒2�𝒘𝒘𝝁𝝁
𝑇𝑇−𝟏𝟏𝟐𝟐𝒘𝒘𝛀𝛀𝒘𝒘

𝑇𝑇�𝑡𝑡 �𝐸𝐸 ��𝑒𝑒�𝒘𝒘𝛀𝛀𝒘𝒘𝑇𝑇𝐵𝐵𝑡𝑡�
2
� − �𝐸𝐸 �𝑒𝑒�𝒘𝒘𝛀𝛀𝒘𝒘𝑇𝑇𝐵𝐵𝑡𝑡��

2

�

= 𝑒𝑒2�𝒘𝒘𝝁𝝁
𝑇𝑇−𝟏𝟏𝟐𝟐𝒘𝒘𝛀𝛀𝒘𝒘

𝑇𝑇�𝑡𝑡 �𝐸𝐸 �𝑒𝑒2�𝒘𝒘𝛀𝛀𝒘𝒘𝑇𝑇𝐵𝐵𝑡𝑡� − �𝐸𝐸 �𝑒𝑒�𝒘𝒘𝛀𝛀𝒘𝒘𝑇𝑇𝐵𝐵𝑡𝑡��
2

�

= 𝑒𝑒2�𝒘𝒘𝝁𝝁
𝑇𝑇−𝟏𝟏𝟐𝟐𝒘𝒘𝛀𝛀𝒘𝒘

𝑇𝑇�𝑡𝑡 �𝑒𝑒2�𝒘𝒘𝝁𝝁
𝑇𝑇−𝟏𝟏𝟐𝟐𝒘𝒘𝛀𝛀𝒘𝒘

𝑇𝑇�𝑡𝑡 − �𝐸𝐸 �𝑒𝑒�𝒘𝒘𝛀𝛀𝒘𝒘𝑇𝑇𝐵𝐵𝑡𝑡��
2
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    = 𝑒𝑒2𝒘𝒘𝝁𝝁𝑇𝑇𝑡𝑡�𝑒𝑒𝒘𝒘𝛀𝛀𝒘𝒘𝑇𝑇𝑡𝑡 − 1� 

 

 

 

 

(6) 

From equation (4), the expected value and the variance of the portfolio log return 𝑙𝑙𝑙𝑙(𝑅𝑅0→𝑡𝑡𝑃𝑃 ) are attained 

as equations (7) and (8), respectively. 

𝐸𝐸�𝑙𝑙𝑙𝑙(𝑅𝑅0→𝑡𝑡𝑃𝑃 )� = 𝐸𝐸 ��𝒘𝒘𝝁𝝁𝑇𝑇 −
𝟏𝟏
𝟐𝟐
𝒘𝒘𝛀𝛀𝒘𝒘𝑇𝑇� 𝑡𝑡 + �𝒘𝒘𝛀𝛀𝒘𝒘𝑇𝑇𝐵𝐵𝑡𝑡� = �𝒘𝒘𝝁𝝁𝑇𝑇 −

𝟏𝟏
𝟐𝟐
𝒘𝒘𝛀𝛀𝒘𝒘𝑇𝑇� 𝑡𝑡 (7) 

𝑉𝑉�𝑙𝑙𝑙𝑙(𝑅𝑅0→𝑡𝑡𝑃𝑃 )� = 𝑉𝑉 ��𝒘𝒘𝝁𝝁𝑇𝑇 −
𝟏𝟏
𝟐𝟐
𝒘𝒘𝛀𝛀𝒘𝒘𝑇𝑇� 𝑡𝑡 + �𝒘𝒘𝛀𝛀𝒘𝒘𝑇𝑇𝐵𝐵𝑡𝑡� = 𝒘𝒘𝛀𝛀𝒘𝒘𝑇𝑇𝑡𝑡 (8) 

 Organize the discussion so far. The price at the time 𝑡𝑡 for asset 𝑖𝑖 (𝑖𝑖 = 1,2,3,4), 𝑆𝑆𝑡𝑡𝑖𝑖, follows the geometric 

Brownian motion in equation (1), and the portfolio weight is always 𝒘𝒘 with continuously rebalanced from time 

point 0 to time point 𝑡𝑡, the initial portfolio value of 1 will be 𝑅𝑅0→𝑡𝑡𝑃𝑃   at time point 𝑡𝑡. The expected value of the 

portfolio amount is 𝐸𝐸(𝑅𝑅0→𝑡𝑡𝑃𝑃 ) = 𝑒𝑒�𝒘𝒘𝝁𝝁𝑇𝑇�𝑡𝑡  and the variance of the portfolio amount is 𝑉𝑉(𝑅𝑅0→𝑡𝑡𝑃𝑃 ) =

𝑒𝑒2𝒘𝒘𝝁𝝁𝑇𝑇𝑡𝑡�𝑒𝑒𝒘𝒘𝛀𝛀𝒘𝒘𝑇𝑇𝑡𝑡 − 1�. Also, the probability distribution of the portfolio return 𝑅𝑅0→𝑡𝑡𝑃𝑃 = 𝑒𝑒𝑋𝑋 follows a lognormal 

distribution with the stochastic variable 𝑋𝑋~𝑁𝑁��𝒘𝒘𝝁𝝁𝑇𝑇 − 𝟏𝟏
𝟐𝟐
𝒘𝒘𝛀𝛀𝒘𝒘𝑇𝑇� 𝑡𝑡, (𝒘𝒘𝛀𝛀𝒘𝒘𝑇𝑇)𝑡𝑡�. At time point 𝑡𝑡, the probability 

that the amount of the portfolio 𝑅𝑅0→𝑡𝑡𝑃𝑃  is below the threshold 𝐾𝐾 is given by  𝑃𝑃(𝑅𝑅0→𝑡𝑡𝑃𝑃 ≤ 𝐾𝐾) =

𝑃𝑃�𝑙𝑙𝑙𝑙(𝑅𝑅0→𝑡𝑡𝑃𝑃 ) ≤ 𝑙𝑙𝑙𝑙(𝐾𝐾)� = 𝑃𝑃�𝑋𝑋 ≤ 𝑙𝑙𝑙𝑙(𝐾𝐾)�. Thus, the downside probability is obtained exactly (without using any 

approximation). 

 

 (Case without rebalancing)  

 Next, we consider the portfolio gross return when no rebalancing is performed from time point 0 to time 

point 𝑡𝑡. The amount of assets at time 0 for asset 𝑖𝑖 (𝑖𝑖 = 1,2,3,4), 𝑆𝑆0𝑖𝑖 , will be the amount of assets at time 

point 𝑡𝑡, 𝑆𝑆𝑡𝑡𝑖𝑖 , in equation (9) by integrating equation (1) from time point 0 to time point 𝑡𝑡. 

𝑆𝑆𝑡𝑡𝑖𝑖 = 𝑆𝑆0𝑖𝑖𝑒𝑒
�𝜇𝜇𝑖𝑖−12𝜎𝜎

𝑖𝑖2�𝑡𝑡+𝜎𝜎𝑖𝑖𝐵𝐵𝑡𝑡𝑖𝑖 (9) 

The asset value of the portfolio at time point 0, 𝑆𝑆0𝑃𝑃, grows up to the asset value of the portfolio at time 

point 𝑡𝑡, 𝑆𝑆𝑡𝑡
𝑃𝑃,𝑁𝑁 , in equation (10). 

𝑆𝑆𝑡𝑡
𝑃𝑃,𝑁𝑁 = �𝑆𝑆0𝑖𝑖𝑒𝑒

�𝜇𝜇𝑖𝑖−12𝜎𝜎
𝑖𝑖2�𝑡𝑡+𝜎𝜎𝑖𝑖𝐵𝐵𝑡𝑡𝑖𝑖

4

𝑖𝑖=1

 (10) 

Where, 𝑆𝑆0𝑖𝑖 = 𝑤𝑤𝑖𝑖𝑆𝑆0𝑃𝑃. 



 
 

Using equation (10), the stochastic variable 𝑅𝑅0→𝑡𝑡
𝑃𝑃,𝑁𝑁  representing the portfolio gross return from time point 0 

to time point 𝑡𝑡 is given by equation (11). 

𝑅𝑅0→𝑡𝑡
𝑃𝑃,𝑁𝑁 =

𝑆𝑆𝑡𝑡
𝑃𝑃,𝑁𝑁

𝑆𝑆0𝑃𝑃
= �𝑤𝑤𝑖𝑖𝑒𝑒

�𝜇𝜇𝑖𝑖−12𝜎𝜎
𝑖𝑖2�𝑡𝑡+𝜎𝜎𝑖𝑖𝐵𝐵𝑡𝑡𝑖𝑖

4

𝑖𝑖=1

 (11) 

From equation (11), the expected value and the variance of the portfolio gross return 𝑅𝑅0→𝑡𝑡
𝑃𝑃,𝑁𝑁  are equations 

(12) and (13), respectively. 

𝐸𝐸�𝑅𝑅0→𝑡𝑡
𝑃𝑃,𝑁𝑁 � = 𝐸𝐸 ��𝑤𝑤𝑖𝑖𝑒𝑒

�𝜇𝜇𝑖𝑖−12𝜎𝜎
𝑖𝑖2�𝑡𝑡+𝜎𝜎𝑖𝑖𝐵𝐵𝑡𝑡𝑖𝑖

4

𝑖𝑖=1

� = � 𝑤𝑤𝑖𝑖𝐸𝐸 �𝑒𝑒
�𝜇𝜇𝑖𝑖−12𝜎𝜎

𝑖𝑖2�𝑡𝑡+𝜎𝜎𝑖𝑖𝐵𝐵𝑡𝑡𝑖𝑖�
4

𝑖𝑖=1

= � 𝑤𝑤𝑖𝑖𝑒𝑒𝜇𝜇
𝑖𝑖𝑡𝑡

4

𝑖𝑖=1
 

(12) 

𝑉𝑉�𝑅𝑅0→𝑡𝑡
𝑃𝑃,𝑁𝑁 � = 𝑉𝑉 �� 𝑤𝑤𝑖𝑖𝑒𝑒

�𝜇𝜇𝑖𝑖−12𝜎𝜎
𝑖𝑖2�𝑡𝑡+𝜎𝜎𝑖𝑖𝐵𝐵𝑡𝑡𝑖𝑖

4

𝑖𝑖=1
� 

= � 𝑤𝑤𝑖𝑖2𝑒𝑒2𝜇𝜇
𝑖𝑖𝑡𝑡 �𝑒𝑒𝜎𝜎𝑖𝑖

2
𝑡𝑡 − 1�

4

𝑖𝑖=1
+ 2�𝑤𝑤𝑖𝑖𝑤𝑤𝑗𝑗𝑒𝑒�𝜇𝜇

𝑖𝑖+𝜇𝜇𝑗𝑗�𝑡𝑡 �𝑒𝑒𝜌𝜌𝑖𝑖,𝑗𝑗𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗𝑡𝑡 − 1�
𝑖𝑖≠𝑗𝑗

 

(13) 

Assuming that the initial amount of the portfolio is 1, if the portfolio is not rebalanced at all from time point 

0 to time point 𝑡𝑡, the downside probability at time point 𝑡𝑡 is formally given by 𝑃𝑃�𝑅𝑅0→𝑡𝑡
𝑃𝑃,𝑁𝑁 ≤ 𝐾𝐾�. However, the 

lognormal distribution does not have the reproductive property appeared in the distribution such as the normal 

distribution, and the distribution of the portfolio amount at time point 𝑡𝑡 is not explicitly attained. Due to the 

reason, the computation of the downside probability at time point 𝑡𝑡 is not exact and is a bit laborious. Toward 

investigation how the downside probability is related to the parameters of the one-period optimization model, 

assuming that 𝜇𝜇𝑖𝑖𝑡𝑡 are small and using the first order Maclaurin expansion of (𝑒𝑒𝑥𝑥  ≅  1 +  𝑥𝑥), the right-hand 

side of the equation (12) in the expected value is approximated to equation (14). 

𝐸𝐸�𝑅𝑅0→𝑡𝑡
𝑃𝑃,𝑁𝑁 � = � 𝑤𝑤𝑖𝑖𝑒𝑒𝜇𝜇

𝑖𝑖𝑡𝑡
4

𝑖𝑖=1
≅� 𝑤𝑤𝑖𝑖�1 + 𝜇𝜇𝑖𝑖𝑡𝑡�

4

𝑖𝑖=1
= � 𝑤𝑤𝑖𝑖

4

𝑖𝑖=1
+ � 𝑤𝑤𝑖𝑖𝜇𝜇𝑖𝑖𝑡𝑡

4

𝑖𝑖=1

= 1 + 𝒘𝒘𝝁𝝁𝑇𝑇𝑡𝑡 

(14) 

We attempt first-order approximation of the right-hand side of equation (13) in the variance. Assuming 

that 𝑒𝑒2𝜇𝜇𝑖𝑖𝑡𝑡 ≅ 1 and parameters such as 𝜎𝜎𝑖𝑖𝑡𝑡 are small and using the first order Maclaurin expansion of (𝑒𝑒𝑥𝑥  ≅
 1 +  𝑥𝑥), the right-hand side of equation (13) in the variance is approximated to equation (15). 

𝑉𝑉�𝑅𝑅0→𝑡𝑡
𝑃𝑃,𝑁𝑁 � = � 𝑤𝑤𝑖𝑖2𝑒𝑒2𝜇𝜇

𝑖𝑖𝑡𝑡 �𝑒𝑒𝜎𝜎𝑖𝑖
2
𝑡𝑡 − 1�

4

𝑖𝑖=1
+  2�𝑤𝑤𝑖𝑖𝑤𝑤𝑗𝑗𝑒𝑒�𝜇𝜇

𝑖𝑖+𝜇𝜇𝑗𝑗�𝑡𝑡 �𝑒𝑒𝜌𝜌𝑖𝑖,𝑗𝑗𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗𝑡𝑡 − 1�
𝑖𝑖≠𝑗𝑗

≅� 𝑤𝑤𝑖𝑖2𝜎𝜎𝑖𝑖
2𝑡𝑡

4

𝑖𝑖=1
+ 2�𝑤𝑤𝑖𝑖𝑤𝑤𝑗𝑗𝜌𝜌𝑖𝑖,𝑗𝑗𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗𝑡𝑡

𝑖𝑖≠𝑗𝑗

= (𝒘𝒘𝛀𝛀𝒘𝒘𝑇𝑇)𝑡𝑡 
(15) 

In this way, even in the case of no rebalancing, the expected value and the variance of the portfolio amount 

𝑅𝑅0→𝑡𝑡
𝑃𝑃,𝑁𝑁  are able to be approximately derived. However, as the investment period 𝑡𝑡 becomes longer, the accuracy 

of the approximation rapidly deteriorates. 

 

 

3．3. A discrete model where the return of each asset follows a normal 



 
 

distribution 

3.1 Discretization of geometric Brownian motion and data sampling frequency 

The price at the time of 𝑙𝑙 for each asset’s 𝑖𝑖 (𝑖𝑖 =  1,2,3,4), 𝑆𝑆𝑛𝑛𝑖𝑖 , follows the geometric Brownian motion. 

Then, the discretized return 𝑋𝑋𝑘𝑘𝑖𝑖  follows the normal distribution in equation (16).1 

𝑋𝑋𝑘𝑘,∆𝑡𝑡
𝑖𝑖 =

𝑆𝑆𝑘𝑘+∆𝑡𝑡𝑖𝑖 − 𝑆𝑆𝑘𝑘𝑖𝑖

𝑆𝑆𝑘𝑘𝑖𝑖
= 𝜇𝜇∆𝑡𝑡𝑖𝑖 ∆𝑡𝑡 + 𝜎𝜎∆𝑡𝑡𝑖𝑖 𝜀𝜀𝑘𝑘,∆𝑡𝑡

𝑖𝑖  (16) 

Where, 𝜀𝜀𝑘𝑘,∆𝑡𝑡
𝑖𝑖  is assumed to follow a time-series-wise independent normal distribution with mean zero and 

variance ∆𝑡𝑡. In addition, the correlation structure among assets is assumed to be Cov�𝜀𝜀𝑘𝑘,∆𝑡𝑡
𝑖𝑖 , 𝜀𝜀𝑘𝑘,∆𝑡𝑡

𝑗𝑗 � = 𝜌𝜌𝑖𝑖,𝑗𝑗 and 

there is no time-series-wise cross-correlation. When using this discrete model, the approximation accuracy 

to the continuous model given by equation (1) decreases as the data sampling frequency decreases. The 

daily (∆𝑡𝑡 = 1 ⁄ 252) sampling frequency, we can generate time series data of daily returns from daily sampled 

asset prices using the left-hand side of equation (16), and then take their expected value and standard 

deviation to obtain the estimated value 𝜇𝜇1 252⁄
𝑖𝑖  and 𝜎𝜎1 252⁄

𝑖𝑖  respectively. The concept is the same when the 

sampled data is divided into monthly (∆𝑡𝑡 =  1 ⁄ 12), quarterly (∆𝑡𝑡 = 1 ⁄ 4), semi-annual (∆𝑡𝑡 =  1 ⁄ 2), and 

annual (∆𝑡𝑡 = 1). 

 

3.2 Frequency of rebalancing and data sampling 

 In this section, we examine the rebalancing frequency and data sampling frequency using discretized 

geometric Brownian motion. We begin to compare the process of deriving the downside probability between 

the case of rebalancing and the case of no rebalancing in semiannual (twice a year) data sampling frequency 

and rebalancing for one year (the first half year and the second half year), then extend the comparison to 

the case 𝑁𝑁 annual frequency and rebalancing 𝑁𝑁 times a year. 

From the price at the time of 𝑙𝑙 for asset 𝑖𝑖, 𝑆𝑆𝑛𝑛,1 2⁄
𝑖𝑖 , the returns obtained during the first and second half 

year are expressed in 𝑋𝑋1,1 2⁄
𝑖𝑖 ,𝑋𝑋2,1 2⁄

𝑖𝑖 , respectively.  

 

                                                      
1 In this study, in order to examine the impact of rebalancing frequency and sampling frequency on the 

precise derivation of downside probability at a future point in time, a discretization of the continuous model 

(where the arithmetic returns follow a normal distribution), as in equation (16), was selected as the discrete 

model. Another discrete model is one in which the logarithmic returns follow a normal distribution, as in equation 

(16') (this is nested in Miyazaki (2005)), which assumes that the differences after the Box-Cox 

transformation follow a normal distribution. While the modeling using equation (16') can describe multi-period 

returns as the sum of one-period returns, it is not used in this study because it complicates the treatment 

of portfolio returns (they are not normally or lognormally distributed). 

𝑋𝑋𝑘𝑘,∆𝑡𝑡
𝑖𝑖 = 𝑙𝑙𝑙𝑙 �

𝑆𝑆𝑘𝑘+∆𝑡𝑡𝑖𝑖

𝑆𝑆𝑘𝑘𝑖𝑖
� = 𝜇𝜇∆𝑡𝑡𝑖𝑖 ∆𝑡𝑡 + 𝜎𝜎∆𝑡𝑡𝑖𝑖 𝜀𝜀𝑘𝑘,∆𝑡𝑡

𝑖𝑖  (16’) 

 



 
 

(Rebalancing portfolio according to data sampling frequency) 

Using the notation in equation (16) and taking one-unit time interval as six months, one period return is a 

six-month return, and the six-month return of a portfolio whose initial weighting is 𝒘𝒘 is ∑ 𝑤𝑤𝑖𝑖𝑋𝑋1,1 2⁄
𝑖𝑖4

𝑖𝑖=1 . If the 

current portfolio amount is written as 𝑆𝑆0,1 2⁄
𝑃𝑃 , the amount of the portfolios at the end of six months and one 

year are 𝑆𝑆1,1 2⁄
𝑃𝑃  and 𝑆𝑆2,1 2⁄

𝑃𝑃 , respectively. Using the expression that the six-month return of a portfolio whose 

initial weighting is 𝒘𝒘 is ∑ 𝑤𝑤𝑖𝑖𝑋𝑋1,1 2⁄
𝑖𝑖4

𝑖𝑖=1 , the portfolio values at the end of six months and one year 𝑆𝑆1,1 2⁄
𝑃𝑃  and 

𝑆𝑆2,1 2⁄
𝑃𝑃  are related to the six-month returns 𝑋𝑋1,1 2⁄

𝑖𝑖 ,𝑋𝑋2,1 2⁄
𝑖𝑖  as equation (17) and equation (18), respectively. 

𝑆𝑆1,1 2⁄
𝑃𝑃 = 𝑆𝑆0,1 2⁄

𝑃𝑃 �1 + �𝑤𝑤𝑖𝑖𝑋𝑋1,1 2⁄
𝑖𝑖

4

𝑖𝑖=1

� (17) 

𝑆𝑆2,1 2⁄
𝑃𝑃 = 𝑆𝑆1,1 2⁄

𝑃𝑃 �1 + �𝑤𝑤𝑖𝑖𝑋𝑋2,1 2⁄
𝑖𝑖

4

𝑖𝑖=1

� (18) 

Using equations (17) and (18), the stochastic variable representing the portfolio gross return from time point 

0 (the current point in time) to time point 2 (one year later) (the amount of money invested in one unit at 

time point 0 that will be available at time point 2) 𝑅𝑅0→2,1 2⁄
𝑃𝑃  is given by equation (19). (corresponding to 

equation (4) in the continuous model) 

𝑅𝑅0→2,1 2⁄
𝑃𝑃 =

𝑆𝑆2,1 2⁄
𝑃𝑃

𝑆𝑆0,1 2⁄
𝑃𝑃 =

𝑆𝑆0,1 2⁄
𝑃𝑃 �1 + ∑ 𝑤𝑤𝑖𝑖𝑋𝑋1,1 2⁄

𝑖𝑖4
𝑖𝑖=1 ��1 +∑ 𝑤𝑤𝑖𝑖𝑋𝑋2,1 2⁄

𝑖𝑖4
𝑖𝑖=1 �

𝑆𝑆0,1 2⁄
𝑃𝑃

= �1 + �𝑤𝑤𝑖𝑖𝑋𝑋1,1 2⁄
𝑖𝑖

4

𝑖𝑖=1

��1 + �𝑤𝑤𝑖𝑖𝑋𝑋2,1 2⁄
𝑖𝑖

4

𝑖𝑖=1

� 

(19) 

Using the notation in equation (16) and taking one-unit time interval as 1⁄𝑁𝑁 year, one period return is a 1

⁄𝑁𝑁 year return, and is denoted as 𝑋𝑋1,1 𝑁𝑁⁄
𝑖𝑖 . The stochastic variable of the portfolio gross return from time 

point 0 (at the present time) to time point 𝑁𝑁 (how much one unit of money invested at time point 0 is worth 

at time point 𝑁𝑁) 𝑅𝑅0→𝑁𝑁,1 𝑁𝑁⁄
𝑃𝑃  is given by equation (20). 

𝑅𝑅0→𝑁𝑁,1 𝑁𝑁⁄
𝑃𝑃 =

𝑆𝑆𝑁𝑁,1 𝑁𝑁⁄
𝑃𝑃

𝑆𝑆0,1 𝑁𝑁⁄
𝑃𝑃 = ��1 + �𝑤𝑤𝑖𝑖𝑋𝑋𝑗𝑗,1 𝑁𝑁⁄

𝑖𝑖
4

𝑖𝑖=1

�
𝑁𝑁

𝑗𝑗=1

 (20) 

At time point 𝑁𝑁, the probability that the amount of the portfolio 𝑅𝑅0→𝑁𝑁,1 𝑁𝑁⁄
𝑃𝑃  is below the threshold 𝐾𝐾 is given 

by 𝑃𝑃�𝑅𝑅0→𝑁𝑁,1 𝑁𝑁⁄
𝑃𝑃 ≤ 𝐾𝐾� = 𝑃𝑃�∏ �1 +∑ 𝑤𝑤𝑖𝑖𝑋𝑋𝑗𝑗,1 𝑁𝑁⁄

𝑖𝑖4
𝑖𝑖=1 �𝑁𝑁

𝑗𝑗=1 ≤ 𝐾𝐾� = 𝑃𝑃�𝑙𝑙𝑙𝑙𝑙𝑙�∏ �1 +∑ 𝑤𝑤𝑖𝑖𝑋𝑋𝑗𝑗,1 𝑁𝑁⁄
𝑖𝑖4

𝑖𝑖=1 �𝑁𝑁
𝑗𝑗=1 � ≤ 𝑙𝑙𝑙𝑙𝑙𝑙𝐾𝐾� =

𝑃𝑃�∑ 𝑙𝑙𝑙𝑙𝑙𝑙�1 + ∑ 𝑤𝑤𝑖𝑖𝑋𝑋𝑗𝑗,1 𝑁𝑁⁄
𝑖𝑖4

𝑖𝑖=1 �𝑁𝑁
𝑗𝑗=1 ≤ 𝑙𝑙𝑙𝑙𝑙𝑙𝐾𝐾� ≅ 𝑃𝑃�∑ ∑ 𝑤𝑤𝑖𝑖𝑋𝑋𝑗𝑗,1 𝑁𝑁⁄

𝑖𝑖4
𝑖𝑖=1

𝑁𝑁
𝑗𝑗=1 ≤ 𝑙𝑙𝑙𝑙𝑙𝑙𝐾𝐾�.  The sampling frequency 𝑁𝑁 is 

sufficiently large and ∑ 𝑤𝑤𝑖𝑖𝑋𝑋𝑗𝑗,1 𝑁𝑁⁄
𝑖𝑖4

𝑖𝑖=1  is sufficiently small, approximation 𝑙𝑙𝑙𝑙𝑙𝑙�1 +∑ 𝑤𝑤𝑖𝑖𝑋𝑋𝑗𝑗,1 𝑁𝑁⁄
𝑖𝑖4

𝑖𝑖=1 � ≅

∑ 𝑤𝑤𝑖𝑖𝑋𝑋𝑗𝑗,1 𝑁𝑁⁄
𝑖𝑖4

𝑖𝑖=1  holds. The probability distribution followed by the stochastic variable ∑ 𝑤𝑤𝑖𝑖𝑋𝑋1,1 𝑁𝑁⁄
𝑖𝑖4

𝑖𝑖=1  is the 

normal distribution with the expected values and variance-covariance matrices estimated by using 1⁄𝑁𝑁-year 

return data 𝝁𝝁𝟏𝟏 𝑵𝑵⁄ = �𝜇𝜇1,1 𝑁𝑁⁄ ,𝜇𝜇2,1 𝑁𝑁⁄ ,𝜇𝜇3,1 𝑁𝑁⁄ ,𝜇𝜇4,1 𝑁𝑁⁄ � and 𝛀𝛀𝟏𝟏 𝑵𝑵⁄ , respectively. In the rebalancing case, if the 

sampling frequency 𝑁𝑁 is sufficiently large, the downside probability can be accurately obtained from the 

normal distribution. 

 

(Without rebalancing portfolio according to data sampling frequency) 

 Next, consider the portfolio gross return when no rebalancing is performed from time point 0 to time point 



 
 

2. The price at time point 0 for asset 𝑖𝑖 (𝑖𝑖 = 1,2,3,4), 𝑆𝑆0,1 2⁄
𝑖𝑖 , becomes 𝑆𝑆2,1 2⁄

𝑖𝑖  at time point 2 in equation (21). 

𝑆𝑆2,1 2⁄
𝑖𝑖 = 𝑆𝑆0,1 2⁄

𝑖𝑖 �1 + 𝑋𝑋1,1 2⁄
𝑖𝑖 ��1 + 𝑋𝑋2,1 2⁄

𝑖𝑖 � (21) 

Using this, the total asset value 𝑆𝑆0𝑃𝑃 at time point 0 becomes 𝑆𝑆2,1 2⁄
𝑃𝑃,𝑁𝑁  at time point 2 in equation (22). 

𝑆𝑆2,1 2⁄
𝑃𝑃,𝑁𝑁 = 𝑆𝑆0,1 2⁄

𝑃𝑃 �𝑤𝑤𝑖𝑖

4

𝑖𝑖=1

�1 + 𝑋𝑋1,1 2⁄
𝑖𝑖 ��1 + 𝑋𝑋2,1 2⁄

𝑖𝑖 � (22) 

Where, 𝑆𝑆0,1 2⁄
𝑖𝑖 = 𝑤𝑤𝑖𝑖𝑆𝑆0,1 2⁄

𝑃𝑃 . 

Using equation (22), the stochastic variable representing the portfolio gross return from time point 0 to time 

point 2 𝑅𝑅0→2,1 2⁄
𝑃𝑃,𝑁𝑁  is given by equation (23). 

𝑅𝑅0→2
𝑃𝑃,𝑁𝑁 =

𝑆𝑆2
𝑃𝑃,𝑁𝑁

𝑆𝑆0𝑃𝑃
= �𝑤𝑤𝑖𝑖�1 + 𝑋𝑋1,1 2⁄

𝑖𝑖 ��1 + 𝑋𝑋2,1 2⁄
𝑖𝑖 �

4

𝑖𝑖=1

 (23) 

Taking one-unit time interval as 1/𝑁𝑁 year, one period return is a 1/𝑁𝑁 year return, and is denoted as 

𝑋𝑋1,1 𝑁𝑁⁄
𝑖𝑖 . The stochastic variable of the portfolio gross return from time point 0 (at the present time) to time 

point 𝑁𝑁 (how much one unit of money invested at time point 0 is worth at time point 𝑁𝑁) 𝑅𝑅0→𝑁𝑁,1 𝑁𝑁⁄
𝑃𝑃,𝑁𝑁  is given 

by equation (24). 

𝑅𝑅0→𝑁𝑁,1 𝑁𝑁⁄
𝑃𝑃,𝑁𝑁 =

𝑆𝑆𝑁𝑁,1 𝑁𝑁⁄
𝑃𝑃,𝑁𝑁

𝑆𝑆0,1 𝑁𝑁⁄
𝑃𝑃 = �𝑤𝑤𝑖𝑖��1 + 𝑋𝑋𝑗𝑗,1 𝑁𝑁⁄

𝑖𝑖 �
𝑁𝑁

𝑗𝑗=1

4

𝑖𝑖=1

 (24) 

At time point 𝑁𝑁, the probability that the amount of the portfolio 𝑅𝑅0→𝑁𝑁,1 𝑁𝑁⁄
𝑃𝑃,𝑁𝑁  is below the threshold 𝐾𝐾 is given 

by 𝑃𝑃�𝑅𝑅0→𝑁𝑁
𝑃𝑃,𝑁𝑁 ≤ 𝐾𝐾� = 𝑃𝑃�∑ 𝑤𝑤𝑖𝑖 ∏ �1 + 𝑋𝑋𝑗𝑗,1 𝑁𝑁⁄

𝑖𝑖 �𝑁𝑁
𝑗𝑗=1

4
𝑖𝑖=1 ≤ 𝐾𝐾�. Unlike the case of rebalancing, due to the fact that 

the weight 𝑤𝑤𝑖𝑖 is outside the stochastic variable ∏ �1 + 𝑋𝑋𝑗𝑗,1 𝑁𝑁⁄
𝑖𝑖 �𝑁𝑁

𝑗𝑗=1 , even though taking logarithm of the 

portfolio gross return, the downside probability cannot be explicitly derived from the normal distribution. 

 

3.3 Implication when rebalancing frequency equals data sampling frequency 

 For the case where the rebalancing frequency equals the data sampling frequency, we will again discuss the 

caution of using a one-period optimization model for the purpose of the long-term portfolio management with 

rebalancing. 

 

(The case where the frequency is annual) 

In the case of annual frequency, putting ∆𝑡𝑡 = 1 in equation (16), equation (16, ∆𝑡𝑡 = 1) is attained. 

𝑋𝑋𝑘𝑘,1
𝑖𝑖 =

𝑆𝑆𝑘𝑘+1,1
𝑖𝑖 − 𝑆𝑆𝑘𝑘,1

𝑖𝑖

𝑆𝑆𝑘𝑘,1
𝑖𝑖 = 𝜇𝜇1𝑖𝑖 ∙ 1 + 𝜎𝜎1𝑖𝑖𝜀𝜀𝑘𝑘,1

𝑖𝑖  (16, ∆𝑡𝑡 = 1) 

The expected value and standard deviation of the annual return 𝑋𝑋𝑘𝑘,1
𝑖𝑖  are 𝜇𝜇1𝑖𝑖  and 𝜎𝜎1𝑖𝑖 , respectively. The 

stochastic variable representing the portfolio gross return from time point 0 (at the present time) to time 

point 𝑇𝑇 (how much one unit of money invested at time zero is worth at time 𝑁𝑁) 𝑅𝑅0→𝑇𝑇,1
𝑃𝑃  is given by equation 

(25). 

𝑅𝑅0→𝑇𝑇,1
𝑃𝑃 =

𝑆𝑆𝑇𝑇,1
𝑃𝑃

𝑆𝑆0,1
𝑃𝑃 = ��1 +�𝑤𝑤𝑖𝑖𝑋𝑋𝑗𝑗,1

𝑖𝑖
4

𝑖𝑖=1

�
𝑇𝑇

𝑗𝑗=1

 (25) 



 
 

At time point 𝑇𝑇, the probability that the amount of the portfolio 𝑅𝑅0→𝑁𝑁,1 𝑁𝑁⁄
𝑃𝑃  is below the threshold value 𝐾𝐾 is 

given by 𝑃𝑃�𝑅𝑅0→𝑇𝑇,1
𝑃𝑃 ≤ 𝐾𝐾� = 𝑃𝑃�∏ �1 + ∑ 𝑤𝑤𝑖𝑖𝑋𝑋𝑗𝑗,1

𝑖𝑖4
𝑖𝑖=1 �𝑇𝑇

𝑗𝑗=1 ≤ 𝐾𝐾� = 𝑃𝑃�𝑙𝑙𝑙𝑙𝑙𝑙�∏ �1 + ∑ 𝑤𝑤𝑖𝑖𝑋𝑋𝑗𝑗,1
𝑖𝑖4

𝑖𝑖=1 �𝑇𝑇
𝑗𝑗=1 � ≤ 𝑙𝑙𝑙𝑙𝑙𝑙𝐾𝐾� =

𝑃𝑃�∑ 𝑙𝑙𝑙𝑙𝑙𝑙�1 + ∑ 𝑤𝑤𝑖𝑖𝑋𝑋𝑗𝑗,1
𝑖𝑖4

𝑖𝑖=1 �𝑇𝑇
𝑗𝑗=1 ≤ 𝑙𝑙𝑙𝑙𝑙𝑙𝐾𝐾� ≅ 𝑃𝑃�∑ ∑ 𝑤𝑤𝑖𝑖𝑋𝑋𝑗𝑗,1

𝑖𝑖4
𝑖𝑖=1

𝑇𝑇
𝑗𝑗=1 ≤ 𝑙𝑙𝑙𝑙𝑙𝑙𝐾𝐾� . Since the sampling frequency 𝑁𝑁 = 1 

is low because ∑ 𝑤𝑤𝑖𝑖𝑋𝑋𝑗𝑗,1 𝑁𝑁⁄
𝑖𝑖4

𝑖𝑖=1  is not sufficiently small, approximation 𝑙𝑙𝑙𝑙𝑙𝑙�1 + ∑ 𝑤𝑤𝑖𝑖𝑋𝑋𝑗𝑗,1 𝑁𝑁⁄
𝑖𝑖4

𝑖𝑖=1 � ≅ ∑ 𝑤𝑤𝑖𝑖𝑋𝑋𝑗𝑗,1 𝑁𝑁⁄
𝑖𝑖4

𝑖𝑖=1  

is considered to be rather coarse. In addition, the distribution followed by the stochastic variable ∑ 𝑤𝑤𝑖𝑖𝑋𝑋𝑗𝑗,1
𝑖𝑖4

𝑖𝑖=1  

is the normal distribution with the expected value 𝒘𝒘𝝁𝝁𝟏𝟏𝑻𝑻 and the variance 𝒘𝒘𝛀𝛀𝟏𝟏𝒘𝒘𝑇𝑇 composed of the expected 

values vector and variance-covariance matrices estimated by using 𝑇𝑇 annual return data 𝝁𝝁𝟏𝟏 =

�𝜇𝜇1,1,𝜇𝜇2,1,𝜇𝜇3,1,𝜇𝜇4,1� and 𝛀𝛀𝟏𝟏, respectively. As the numerical example in Section 4 confirms, the confidence 

intervals for the estimated parameter obtained from the annual return data are considerably wide and the 

estimation accuracy is quite coarse. 

 

(Cases where frequencies are semi-annual (𝑵𝑵 = 𝟐𝟐), Quarterly (𝑵𝑵 = 𝟒𝟒), Monthly (𝑵𝑵 = 𝟏𝟏𝟐𝟐), Weekly (𝑵𝑵 = 𝟓𝟓𝟐𝟐), 

daily (𝑵𝑵 = 𝟐𝟐𝟓𝟓𝟐𝟐)) 

In the case of 𝑁𝑁 times a year frequency, putting ∆𝑡𝑡 = 1 𝑁𝑁⁄  in equation (16), equation (16, ∆𝑡𝑡 = 1 𝑁𝑁⁄ ) is 

attained. 

𝑋𝑋𝑗𝑗,1 𝑁𝑁⁄
𝑖𝑖 =

𝑆𝑆𝑗𝑗+1,1 𝑁𝑁⁄
𝑖𝑖 − 𝑆𝑆𝑗𝑗,1 𝑁𝑁⁄

𝑖𝑖

𝑆𝑆𝑗𝑗,1 𝑁𝑁⁄
𝑖𝑖 = 𝜇𝜇1 𝑁𝑁⁄

𝑖𝑖 ∙
1
𝑁𝑁

+ 𝜎𝜎1 𝑁𝑁⁄
𝑖𝑖 𝜀𝜀𝑗𝑗,1 𝑁𝑁⁄

𝑖𝑖  (16, ∆𝑡𝑡 = 1 𝑁𝑁⁄ ) 

The expected values and standard deviations of 1 𝑁𝑁⁄  year return 𝑋𝑋𝑗𝑗,1 𝑁𝑁⁄
𝑖𝑖  are 𝜇𝜇1 𝑁𝑁⁄

𝑖𝑖 /𝑁𝑁 and 𝜎𝜎1 𝑁𝑁⁄
𝑖𝑖 /√𝑁𝑁 , 

respectively. The stochastic variable representing the portfolio gross return from time point 0 (at the present 

time) to time point 𝑁𝑁 ∙ 𝑇𝑇 (how much one unit of money invested at time point 0 is worth at time point 𝑁𝑁 ∙ 𝑇𝑇) 

 𝑅𝑅0→𝑁𝑁∙𝑇𝑇,1 𝑁𝑁⁄
𝑃𝑃  is given by equation (26). 

𝑅𝑅0→𝑁𝑁∙𝑇𝑇,1 𝑁𝑁⁄
𝑃𝑃 =

𝑆𝑆𝑁𝑁∙𝑇𝑇,1 𝑁𝑁⁄
𝑃𝑃

𝑆𝑆0,1 𝑁𝑁⁄
𝑃𝑃 = ��1 + �𝑤𝑤𝑖𝑖𝑋𝑋𝑗𝑗,1 𝑁𝑁⁄

𝑖𝑖
4

𝑖𝑖=1

�
𝑁𝑁∙𝑇𝑇

𝑗𝑗=1

 (26) 

At time point 𝑁𝑁 ∙ 𝑇𝑇, the probability that the amount of the portfolio 𝑅𝑅0→𝑁𝑁∙𝑇𝑇,1 𝑁𝑁⁄
𝑃𝑃  is below the threshold 𝐾𝐾 is 

given by 𝑃𝑃�𝑅𝑅0→𝑁𝑁∙𝑇𝑇,1 𝑁𝑁⁄
𝑃𝑃 ≤ 𝐾𝐾� = 𝑃𝑃�∏ �1 +∑ 𝑤𝑤𝑖𝑖𝑋𝑋𝑗𝑗,1 𝑁𝑁⁄

𝑖𝑖4
𝑖𝑖=1 �𝑁𝑁∙𝑇𝑇

𝑗𝑗=1 ≤ 𝐾𝐾� = 𝑃𝑃�𝑙𝑙𝑙𝑙𝑙𝑙�∏ �1 +∑ 𝑤𝑤𝑖𝑖𝑋𝑋𝑗𝑗,1 𝑁𝑁⁄
𝑖𝑖4

𝑖𝑖=1 �𝑁𝑁∙𝑇𝑇
𝑗𝑗=1 � ≤

𝑙𝑙𝑙𝑙𝑙𝑙𝐾𝐾� = 𝑃𝑃�∑ 𝑙𝑙𝑙𝑙𝑙𝑙�1 +∑ 𝑤𝑤𝑖𝑖𝑋𝑋𝑗𝑗,1 𝑁𝑁⁄
𝑖𝑖4

𝑖𝑖=1 �𝑁𝑁∙𝑇𝑇
𝑗𝑗=1 ≤ 𝑙𝑙𝑙𝑙𝑙𝑙𝐾𝐾� ≅ 𝑃𝑃�∑ ∑ 𝑤𝑤𝑖𝑖𝑋𝑋𝑗𝑗,1 𝑁𝑁⁄

𝑖𝑖4
𝑖𝑖=1

𝑁𝑁∙𝑇𝑇
𝑗𝑗=1 ≤ 𝑙𝑙𝑙𝑙𝑙𝑙𝐾𝐾�.  As the sampling 

frequency 𝑁𝑁 increases, ∑ 𝑤𝑤𝑖𝑖𝑋𝑋𝑗𝑗,1 𝑁𝑁⁄
𝑖𝑖4

𝑖𝑖=1  becomes smaller and the accuracy of the approximation 

𝑙𝑙𝑙𝑙𝑙𝑙�1 + ∑ 𝑤𝑤𝑖𝑖𝑋𝑋𝑗𝑗,1 𝑁𝑁⁄
𝑖𝑖4

𝑖𝑖=1 � ≅ ∑ 𝑤𝑤𝑖𝑖𝑋𝑋𝑗𝑗,1 𝑁𝑁⁄
𝑖𝑖4

𝑖𝑖=1  is improved. The distribution followed by the stochastic variable 

∑ 𝑤𝑤𝑖𝑖𝑋𝑋1,1 𝑁𝑁⁄
𝑖𝑖4

𝑖𝑖=1  is the normal distribution with the expected value 𝒘𝒘𝝁𝝁𝑇𝑇𝟏𝟏 𝑵𝑵⁄  and the variance 𝒘𝒘𝛀𝛀𝟏𝟏 𝑵𝑵⁄ 𝒘𝒘𝑇𝑇 with 

expected values vector and variance-covariance matrices estimated by using 1 ⁄ 𝑁𝑁-year return data for 

𝑁𝑁 ∙ 𝑇𝑇 periods  𝝁𝝁𝟏𝟏 𝑵𝑵⁄ = �𝜇𝜇1,1 𝑁𝑁⁄ ,𝜇𝜇2,1 𝑁𝑁⁄ ,𝜇𝜇3,1 𝑁𝑁⁄ ,𝜇𝜇4,1 𝑁𝑁⁄ � and 𝛀𝛀𝟏𝟏 𝑵𝑵⁄ , respectively.   

Thus, when the rebalancing frequency and the data sampling frequency are equal, whether annual, semiannual, 

monthly, weekly, or daily, the downside probability at a future time can be approximated by a normal distribution. 

While the confidence intervals for the estimated parameter (the expected value 𝒘𝒘𝝁𝝁𝑇𝑇𝟏𝟏 and the variance 

𝒘𝒘𝛀𝛀𝟏𝟏𝒘𝒘𝑇𝑇) obtained from the annual return data are considerably large as we mentioned earlier, the confidence 

intervals for the estimated parameter (the expected value 𝒘𝒘𝝁𝝁𝑇𝑇𝟏𝟏 𝑵𝑵⁄  and the variance 𝒘𝒘𝛀𝛀𝟏𝟏 𝑵𝑵⁄ 𝒘𝒘𝑇𝑇) obtained 

from 1/𝑁𝑁-year return data for 𝑁𝑁 ∙ 𝑇𝑇 periods shrink as the sampling frequency 𝑁𝑁 is increased. 



 
 

Based on the previous discussion, "the condition that both the frequency of data sampling and the frequency 

of rebalancing are sufficiently high" should be satisfied to explicitly ascertain the relation between the 

parameters (mean and variance) of the one-period optimization model and the downside probability from the 

normal distribution. 

 

4．Numerical examples 

In Section 1, we introduced Honda (2019) as a preceding study and pointed out that when attempting 

optimization based on estimated parameters, the parameter values, in addition to being unbiased, should have 

their confidence intervals as small as possible, so that a sampling frequency that can ensure a sufficient 

number of return data is necessary. Also, in Section 3, when the rebalancing frequency and the data sampling 

frequency are equal, the downside probabilities after 𝑇𝑇 years are approximately given by 

 𝑃𝑃�∑ ∑ 𝑤𝑤𝑖𝑖𝑋𝑋𝑗𝑗,1
𝑖𝑖4

𝑖𝑖=1
𝑇𝑇
𝑗𝑗=1 ≤ 𝑙𝑙𝑙𝑙𝑙𝑙𝐾𝐾� (case of annual sampling) and 𝑃𝑃�∑ ∑ 𝑤𝑤𝑖𝑖𝑋𝑋𝑗𝑗,1 𝑁𝑁⁄

𝑖𝑖4
𝑖𝑖=1

𝑁𝑁∙𝑇𝑇
𝑗𝑗=1 ≤ 𝑙𝑙𝑙𝑙𝑙𝑙𝐾𝐾� (case of 1/𝑁𝑁  

year sampling). The confidence interval for the downside probability is affected by a first-order approximation 

of the logarithmic function as well as the estimated intervals for the expected value and variance of the 

stochastic variable ∑ ∑ 𝑤𝑤𝑖𝑖𝑋𝑋𝑗𝑗,1
𝑖𝑖4

𝑖𝑖=1
𝑇𝑇
𝑗𝑗=1  and ∑ ∑ 𝑤𝑤𝑖𝑖𝑋𝑋𝑗𝑗,1 𝑁𝑁⁄

𝑖𝑖4
𝑖𝑖=1

𝑁𝑁∙𝑇𝑇
𝑗𝑗=1 . 

In the numerical example, as return data following a normal distribution, we adopt 1/𝑁𝑁-year sampling return 

data 𝑋𝑋𝑗𝑗,1 𝑁𝑁⁄  over 𝑁𝑁 ∙ 𝑇𝑇 period. The sampling frequency can be annual, semiannual, quarterly, monthly, weekly, 

or daily (𝑁𝑁 = 1, 2, 4, 12, 52, 252), and the years of return data are 5 years and 25 years (𝑇𝑇 =  5, 25), 

and the confidence intervals for the expected value and standard deviation obtained from these return data 

sets are examined. For details on the confidence intervals of expected values and standard deviations, please 

refer to Noda and Miyaoka (1990). 

 

(Confidence interval of expected value) 

The expected value 𝑋𝑋�1 𝑁𝑁⁄  and unbiased variance 𝑈𝑈1 𝑁𝑁⁄
2  estimated from 1/𝑁𝑁-year sampling return data 

𝑋𝑋𝑗𝑗,1 𝑁𝑁⁄  over 𝑁𝑁 ∙ 𝑇𝑇 periods are given by equations (27) and (28), respectively. 

𝑋𝑋�1 𝑁𝑁⁄ =
1

𝑁𝑁 ∙ 𝑇𝑇
�𝑋𝑋𝑗𝑗,1 𝑁𝑁⁄

𝑁𝑁∙𝑇𝑇

𝑗𝑗=1

 (27) 

𝑈𝑈1 𝑁𝑁⁄
2 =

1
𝑁𝑁 ∙ 𝑇𝑇 − 1

��𝑋𝑋𝑗𝑗,1 𝑁𝑁⁄ − 𝑋𝑋�1 𝑁𝑁⁄ �2
𝑁𝑁∙𝑇𝑇

𝑗𝑗=1

 (28) 

Assumed that the true expected value of 1 𝑁𝑁⁄ -year return is 𝜇𝜇1 𝑁𝑁⁄ , 
𝑋𝑋�1 𝑁𝑁⁄ −𝜇𝜇1 𝑁𝑁⁄

𝑈𝑈1 𝑁𝑁⁄
2 √𝑁𝑁∙𝑇𝑇⁄ ~𝑡𝑡𝑁𝑁∙𝑇𝑇−1, where 𝑡𝑡𝑁𝑁∙𝑇𝑇−1 follows 

𝑡𝑡 distribution with degree of freedom 𝑁𝑁 ∙ 𝑇𝑇 − 1. If we adopt the upper 100(𝛼𝛼 2⁄ ) percentile points, we obtain 

equation (29). 

𝑃𝑃 �−𝑡𝑡𝑁𝑁∙𝑇𝑇−1,𝛼𝛼2
≤
𝑋𝑋�1 𝑁𝑁⁄ − 𝜇𝜇1 𝑁𝑁⁄

𝑈𝑈1 𝑁𝑁⁄
2 √𝑁𝑁 ∙ 𝑇𝑇⁄

≤ 𝑡𝑡𝑁𝑁∙𝑇𝑇−1,𝛼𝛼2
� = 1 − 𝛼𝛼 (29) 

Rewriting equation (29), we obtain equation (30). 



 
 

𝑃𝑃 �𝑋𝑋�1 𝑁𝑁⁄ − 𝑡𝑡𝑁𝑁∙𝑇𝑇−1,𝛼𝛼2

𝑈𝑈1 𝑁𝑁⁄

√𝑁𝑁 ∙ 𝑇𝑇
≤ 𝜇𝜇1 𝑁𝑁⁄ ≤ 𝑋𝑋�1 𝑁𝑁⁄ + 𝑡𝑡𝑁𝑁∙𝑇𝑇−1,𝛼𝛼2

𝑈𝑈1 𝑁𝑁⁄

√𝑁𝑁 ∙ 𝑇𝑇
� = 1 − 𝛼𝛼 (30) 

From equation (30), the 100(1 − 𝛼𝛼) percentile confidence interval of 𝜇𝜇1 𝑁𝑁⁄  is �𝑋𝑋�1 𝑁𝑁⁄ − 𝑡𝑡𝑁𝑁∙𝑇𝑇−1,𝛼𝛼2

𝑈𝑈1 𝑁𝑁⁄

√𝑁𝑁∙𝑇𝑇
,𝑋𝑋�1 𝑁𝑁⁄ +

𝑡𝑡𝑁𝑁∙𝑇𝑇−1,𝛼𝛼2

𝑈𝑈1 𝑁𝑁⁄

√𝑁𝑁∙𝑇𝑇
�. Inequality in the left-hand side of equation (30) multiplied by 𝑁𝑁 yields equation (31). 

𝑃𝑃 �𝑁𝑁 ∙ 𝑋𝑋�1 𝑁𝑁⁄ − 𝑡𝑡𝑁𝑁∙𝑇𝑇−1,𝛼𝛼2

𝑈𝑈1 𝑁𝑁⁄ √𝑁𝑁
√𝑇𝑇

≤ 𝑁𝑁 ∙ 𝜇𝜇1 𝑁𝑁⁄ ≤ 𝑁𝑁 ∙ 𝑋𝑋�1 𝑁𝑁⁄ + 𝑡𝑡𝑁𝑁∙𝑇𝑇−1,𝛼𝛼2

𝑈𝑈1 𝑁𝑁⁄ √𝑁𝑁
√𝑇𝑇

� = 1 − 𝛼𝛼 (31) 

Based on equation (31), the confidence interval for the expected annualized value of 𝑁𝑁 ∙ 𝜇𝜇1 𝑁𝑁⁄  is given by 

equation (32). 

𝑃𝑃 �𝑁𝑁 ∙ 𝑋𝑋�1 𝑁𝑁⁄ − 𝑡𝑡𝑁𝑁∙𝑇𝑇−1,𝛼𝛼2

𝑈𝑈1 𝑁𝑁⁄ √𝑁𝑁
√𝑇𝑇

,𝑁𝑁 ∙ 𝑋𝑋�1 𝑁𝑁⁄ + 𝑡𝑡𝑁𝑁∙𝑇𝑇−1,𝛼𝛼2

𝑈𝑈1 𝑁𝑁⁄ √𝑁𝑁
√𝑇𝑇

� (32) 

Noticing that the equation that  𝑁𝑁 ∙ 𝑋𝑋�1 𝑁𝑁⁄  satisfies is 1 ∙ 𝑋𝑋�1 = 2 ∙ 𝑋𝑋�1 2⁄ = 4 ∙ 𝑋𝑋�1 4⁄ = 12 ∙ 𝑋𝑋�1 12⁄ = 52 ∙ 𝑋𝑋�1 52⁄ =

252 ∙ 𝑋𝑋�1 252⁄  and also the equation that 𝑈𝑈1 𝑁𝑁⁄ √𝑁𝑁  satisfies is 𝑈𝑈1√1 = 𝑈𝑈1 2⁄ √2 = 𝑈𝑈1 4⁄ √4 = 𝑈𝑈1 12⁄ √12 =

𝑈𝑈1 52⁄ √52 = 𝑈𝑈1 252⁄ √252, the essential influence of the difference in sampling frequency on the confidence 

interval of the annualized expected value is the degree of freedom of the confidence coefficient 𝑡𝑡𝑁𝑁∙𝑇𝑇−1,𝛼𝛼2
. 

 

(Confidence interval of variance) 

 Assumed that the variance of 1/𝑁𝑁-year return is 𝜎𝜎1 𝑁𝑁⁄
2 , 

∑ �𝑋𝑋𝑗𝑗,1 𝑁𝑁⁄ −𝑋𝑋�1 𝑁𝑁⁄ �2𝑁𝑁∙𝑇𝑇
𝑗𝑗=1

𝜎𝜎1 𝑁𝑁⁄
2 ~𝜒𝜒𝑁𝑁∙𝑇𝑇−12 , where 𝜒𝜒𝑁𝑁∙𝑇𝑇−12  follows 

𝜒𝜒2 distribution with degree of freedom 𝑁𝑁 ∙ 𝑇𝑇 – 1. If we adopt the upper 100(𝛼𝛼⁄2) percentile points, we obtain 

equation (33). 

𝑃𝑃 �𝜒𝜒𝑁𝑁∙𝑇𝑇−1,1−𝛼𝛼 2⁄
2 ≤

∑ �𝑋𝑋𝑗𝑗,1 𝑁𝑁⁄ − 𝑋𝑋�1 𝑁𝑁⁄ �2𝑁𝑁∙𝑇𝑇
𝑗𝑗=1

𝜎𝜎1 𝑁𝑁⁄
2 ≤ 𝜒𝜒𝑁𝑁∙𝑇𝑇−1,𝛼𝛼 2⁄

2 � = 1 − 𝛼𝛼 (33) 

Rewriting equation (33), we obtain equation (34). 

𝑃𝑃 �
∑ �𝑋𝑋𝑗𝑗,1 𝑁𝑁⁄ − 𝑋𝑋�1 𝑁𝑁⁄ �2𝑁𝑁∙𝑇𝑇
𝑗𝑗=1

𝜒𝜒𝑁𝑁∙𝑇𝑇−1,𝛼𝛼 2⁄
2 ≤ 𝜎𝜎1 𝑁𝑁⁄

2 ≤
∑ �𝑋𝑋𝑗𝑗,1 𝑁𝑁⁄ − 𝑋𝑋�1 𝑁𝑁⁄ �2𝑁𝑁∙𝑇𝑇
𝑗𝑗=1

𝜒𝜒𝑁𝑁∙𝑇𝑇−1,1−𝛼𝛼 2⁄
2 � = 1 − 𝛼𝛼 (34) 

From equation (34), the confidence interval for 𝜎𝜎1 𝑁𝑁⁄
2  is �

∑ �𝑋𝑋𝑗𝑗,1 𝑁𝑁⁄ −𝑋𝑋�1 𝑁𝑁⁄ �2𝑁𝑁∙𝑇𝑇
𝑗𝑗=1

𝜒𝜒𝑁𝑁∙𝑇𝑇−1,𝛼𝛼 2⁄
2 ,

∑ �𝑋𝑋𝑗𝑗,1 𝑁𝑁⁄ −𝑋𝑋�1 𝑁𝑁⁄ �2𝑁𝑁∙𝑇𝑇
𝑗𝑗=1

𝜒𝜒𝑁𝑁∙𝑇𝑇−1,1−𝛼𝛼 2⁄
2 �. 

After the left-hand side of equation (34) is rewritten by way of equation (28), the resulting inequality is 

multiplied by 𝑁𝑁, then, the confidence interval of the annualized variance 𝑁𝑁 ∙ 𝜎𝜎1 𝑁𝑁⁄
2  is obtained as equation (35). 

𝑃𝑃 �
(𝑁𝑁 ∙ 𝑇𝑇 − 1)
𝜒𝜒𝑁𝑁∙𝑇𝑇−1,𝛼𝛼 2⁄
2 𝑁𝑁 ∙ 𝑈𝑈1 𝑁𝑁⁄

2 ≤ 𝑁𝑁 ∙ 𝜎𝜎1 𝑁𝑁⁄
2 ≤

(𝑁𝑁 ∙ 𝑇𝑇 − 1)
𝜒𝜒𝑁𝑁∙𝑇𝑇−1,1−𝛼𝛼 2⁄
2 𝑁𝑁 ∙ 𝑈𝑈1 𝑁𝑁⁄

2 � = 1 − 𝛼𝛼 (35) 

Noticing that the equation that 𝑁𝑁 ∙ 𝑈𝑈1 𝑁𝑁⁄
2  satisfies is 1 ∙ 𝑈𝑈12 = 2 ∙ 𝑈𝑈1 2⁄

2 = 4 ∙ 𝑈𝑈1 4⁄
2 = 12 ∙ 𝑈𝑈1 12⁄

2 = 52 ∙ 𝑈𝑈1 52⁄
2 =

252 ∙ 𝑈𝑈1 252⁄
2 , the essential influence of the difference in sampling frequency on the confidence interval of the 

annualized variance is values of the coefficients 
(𝑁𝑁∙𝑇𝑇−1)
𝜒𝜒𝑁𝑁∙𝑇𝑇−1,𝛼𝛼 2⁄
2  and 

(𝑁𝑁∙𝑇𝑇−1)
𝜒𝜒𝑁𝑁∙𝑇𝑇−1,1−𝛼𝛼 2⁄
2 . 

 True expected value 𝑁𝑁∙𝜇𝜇1⁄𝑁𝑁 and standard deviation √𝑁𝑁 ∙ 𝜎𝜎1/ 𝑁𝑁 of the annual return are set to 5% and 10%, 

respectively, and also confidence level 𝛼𝛼 is set to 0.05. The confidence intervals for the expected value and 



 
 

standard deviation are shown in Figure 1 and Figure 2, respectively, for 5 and 25 years of return data. The 

confidence intervals are shown for the case where the estimated expected value and the variance are equal 

to the true expected value and the variance of the return (𝜇𝜇1 𝑁𝑁⁄ = 𝑋𝑋�1 𝑁𝑁⁄ ,𝜎𝜎1 𝑁𝑁⁄
2 = 𝑈𝑈1 𝑁𝑁⁄

2 ). 

Focusing on the confidence interval of the expected value, we find that the confidence interval shrinks 

significantly when the number of years 𝑇𝑇 of return data is increased from 5 years (Figure 1a) to 25 years 

(Figure 1b). However, the effect of increasing the sampling frequency on the confidence interval is small, 

especially when the number of years of return data is 25 years. 

 Regarding the confidence interval of the standard deviation, if the number of years of return data 𝑇𝑇 is 

increased from 5 years (Figure 2a) to 25 years (Figure 2b), the confidence interval shrinks significantly, as 

in the case of expected values. As the sampling frequency 𝑁𝑁 is increased, the confidence interval shrinks 

regardless of the number of years of return data. This effect is particularly large when the number of years 

of return data is 5 years. 

 From the numerical example, two implications for the case where investment opportunities do not vary are 

as follows. First, the confidence interval of the standard deviation shrinks rapidly as the sampling frequency 

increases, so to grasp the downside probability sharply, it is effective to increase the data sampling frequency 

within a realistic rebalancing frequency. Next, the confidence interval for the expected value will not shrink 

essentially unless a longer number of years of return data is taken. However, there is concern that attempting 

to take a longer number of years of return data may include periods of time that may differ from future 

economic assumptions. It would be preferable to use an approach other than simply estimating expected 

returns from historical return data, such as using forward-looking expected returns. 

  



 
 

 

  

(a) Years of return data T=5 (b) Years of return data T=25 

Fig.１ 95% confidence intervals for annualized expected values 

 

 

  

(a) Years of return data T=5 (b) Years of return data T=25 

Fig. 2 95% confidence intervals for annualized standard deviations 

 

 

5．Summary and future issues 

In this paper, we show that for both continuous and discrete models, when investment opportunities do not 

vary, "both the frequency of data sampling and the frequency of rebalancing are sufficiently high" should be 

satisfied to explicitly capture the relation between parameters (mean and variance) of one-period optimization 

model and the downside probability from the normal distribution. In addition, as an implication from the viewpoint 

of capturing the efficient frontier and downside probability sharply, it was found that it is better to collect 

return data at a sampling frequency that can take as many samples as possible. 



 
 

 Here are four main issues to be addressed in the future. 

i. The target amount for determining the downside probability was set as a constant value 𝐾𝐾. However, it 

is desirable to extend the model to include the target amount as a stochastic variable in the application 

of the model.  

ii. Explore appropriate estimation methods, market data, etc. regarding forward-looking expected returns 

and variance-covariance matrices.  

iii. Based on the empirical analysis, extend the model to the case of variable investment opportunities, if 

necessary.  

iv. The GPIF's policy asset mix is reviewed every five years based on the fiscal verification. The 

appropriateness of using a one-period model for long-term investment would need to be fully considered. 

In this case, the framework of the multi-period portfolio optimization model in Hibiki (2004) may be useful. 
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